The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1  1  1  X
 0  X  0  0  X  X  0  X 2X 4X 3X 4X  0 2X 4X 4X  X 2X 2X  X 3X 3X  X 3X 4X  0  X  0 2X 2X 2X 4X 2X 4X  0  X 4X  0 3X 3X 2X  0 4X 3X 2X 3X  X  0 3X 2X  X 2X 4X 3X 2X 2X 4X  X  X  X 4X 4X  X 4X  X
 0  0  X  0 3X 2X  X 4X  0  X  X  X 3X 2X  0 2X 3X  X 2X 4X  0 3X 2X 3X 2X 4X  X 4X 4X 4X  X  0  X 3X 3X 2X  0  X 2X 2X  X  0  X  0 2X 2X  0 3X 3X  0 3X 2X 2X  0 3X 3X 4X  X  0 4X  0 2X  X  X 3X
 0  0  0  X 3X  X 4X 3X 3X 3X  0  X  X  0 3X  X 2X 2X 3X  0 4X  X 3X 3X  0 4X  X  0 3X 4X 4X 4X  X 4X 4X  0  X 3X 2X  X  0 3X 2X  0 2X  0  X 3X 4X 4X  0 4X 4X  X  X  0 2X 3X 3X 2X 4X 2X 2X  0  X

generates a code of length 65 over Z5[X]/(X^2) who�s minimum homogenous weight is 250.

Homogenous weight enumerator: w(x)=1x^0+160x^250+100x^252+196x^255+800x^257+120x^260+1600x^262+28x^265+28x^270+28x^275+16x^280+16x^285+4x^290+8x^295+12x^300+4x^305+4x^315

The gray image is a linear code over GF(5) with n=325, k=5 and d=250.
This code was found by Heurico 1.16 in 0.115 seconds.